
o
!

°i
<
Z

NASA TN D- 1015

TECHNICAL NOTE

D-lOIS

THEORETICAL EVALUATION OF HYPERSONIC FORCES, MOMENTS, AND

STABILITY DERIVATIVES FOR COMBINATIONS OF FLAT PLATES,

INCLUDING EFFECTS OF BLUNT LEADING EDGES,

BY NEWTONIAN IMPACT THEORY

By Walter B. Olstad

Langley Research Center

Langley Air Force Base, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON March 1962





1T

> • , i_

It / ";ii_ .... ! )'_ 't

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-lO15

L

1

6

9
1

THEORETICAL EVALUATION OF HYPERSONIC FORCES, MOMENTS, AND

STABILITY DERIVATIVES FOR COMBINATIONS OF FLAT PLATES,

INCLUDING EFFECTS OF BLUNT LEADING EDGES,

BY NEWTONIAN IMPACT THEORY

By Walter B. 01stad

SUMMARY

A method, based on the modified Newtonian theory, for calculating

aerodynamic forces, moments, and stability derivatives at zero sideslip

angle for combinations of flat plates of arbitrary planform shape and

orientation is presented. Methods for predicting the aerodynamic forces

on hemicylindrical leading edges and spherical-wedge nose sections are

also presented. Equations are derived and several deslgn-type charts

are presented to facilitate computation. Values of the multipllcative

factor used in modifying the Newtonian impact theory to account for

variations in Mach number and the ratio of specific heats are discussed.

INTRODUCTION

Newtonian impact theory as modified according to Lees (ref. 1),

where the empirical modification consists of a multiplicative factor

which makes the formula for the pressure coefficient give the correct

stagnation pressure, has proven extremely useful in the prediction of

static forces and moments on bodies at hypersonic speeds. Simplified

methods of application to the steady-state case of the modified theory

without the Busemann centrifugal correction for arbitrary inclined bodies

of revolution are presented in references 2 and 3. An extension of these

Newtonian concepts without the centrifugal correction to the quasi-steady

case has been applied to determine the stability derivatives of bodies

of revolution in references 4, 5, and 6. The use of a quasi-steady

approach for the determination of stability derivatives rather than the

use of an unsteady flow theory, such as that developed by Hayes and

Probstein (ref. 7), may be Justified by the fact that the reduced fre-

quency of the motion of the body is very much smaller than unity at the

free-stream velocities of interest.
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The purpose of this analysis is to present a method, based on the
modified Newtonian theory, for calculating the aerodynamic forces, moments,
and stability derivatives for combinations of flat plates of arbitrary
planform shape and orientation. Becausethe reduced frequency of motion
of these surfaces is very small comparedwith unity, the quasi-steady
approach is used and the centrifugal correction is neglected. (The fluid
particles actually follow an accelerated or curved path in the case of
an oscillating flat plate, the amount of curvature depending on the
reduced frequency of oscillation.) Methods for predicting the aerody-
namic forces on hemicylindrical leading edges and spherical-wedge nose
sections are also presented. The centrifugal correction is also neglected
in the derivation of force and momentexpressions for the leading edges
and noses, because the modified Newtonian impact theory without this cor-
rection has been shown to be in better agreement with experiment (for

example, ref. 8) than the theory with the centrifugal correction.

Application of the present method to a specific configuration is

presented and values of the multiplicative factor used in modifying the

Newtonian impact theory to account for variations in Mach number and the

ratio of specific heats are discussed.
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a, b, c

a',b',c'

AI,

CA

Cl

%

cN

distances in x-, y-, and z-directions, respectively, from

the origin of the body-axis system to the centroid of

area of the deflected surface

distances in x-, y-, and z-directions, respectively, from

an arbitrary moment reference center (I) to a second

moment reference center (2)

functions for evaluation of axial-force coefficient on

hemicylindrical leading edge

axial-force coefficient,
Axial force

q_S

rolling-moment coefficient,
Rolling moment

q_Sl

pitching-moment coefficient, ,Pitching moment
q_SZ

normal-force coefficient, Normal force
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Cn

Yawin6 moment

yawing-moment coefficient, q S_

% pressure coefficient,

C_
side-force coefficient, Side force

_s

fi(_), f2(_), fs(_), f4(_)
functions for evaluation of force coeffi-

cients on hemicyllndrical leading edge

moment of inertia of deflected surface with respect to an

axis parallel to the x'-axis and passing through the

centroid of area of the surface

moment of inertia of deflected surface with respect to an

axis parallel to the y'-axis and passing through the

centrold of area of the surface

K

L

M_

n

N I,N2

p,q_r

product of inertia of the deflected surface with respect to

a pair of axes parallel to the x' and y' axes and passing

through the centroid of area of the surface

unit vectors in the body-axis system

multlpllcatlve factor in the Newtonlan expression for the

pressure coefficient (see eq. (6))

reference length

length of square-cut section of hemicylindrical leading

ed_ (fig. 9)

free-streamMach number

unit vector normal to deflected surface, positive in direc-

tion of Z'-axis

functions for evaluation of normal-force coefficient on

hemicyllndrical leading edge

angular velocities of the deflected surface about the body-

axis system
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P_

%

local static pressure

free-stream static pressure

free-stream dynamic pressure,

..-.4.
r

R

S

U

..-.4,
U

Uxj Uy, Uz

VN

unit radius vector of hemlcyllndrical leading edge (fig. 9)

or of spherical-wedge nose section (fig. ll), positive

when pointed out of surface

radius of hemlcylindrical leading edge (fig. 9) or of

spherical-wedge nose section (fig. ll)

reference area

distance along hemicylindrlcal leading edge

unit vector parallel to hemicylindrical leading edge

scalar components of vector U

z-dlrections, respectively

in the x-, y-, and

velocity normal to deflected surface; arrow over symbol
indicates vector
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v.

X,Y, Z

x, y,z

X' Z',_[w,

X w Z t,y',

normal velocity vector at the stagnation llne of a hemi-

cylindrical leading edge

free-streamvelocity; arrow over symbol indicates vector

body axes

coordinates In body-axls system (see fig. I)

axes of deflected surface after rotation through angles r,

5, and _ (see fig. 2)

coordinates in X', Y', and Z' system of axes

distances In x-, y-, and z-dlrections, respectively, of a

point on the deflected surface from the centroid of area
of the surface
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Yl' Y2

7

7 e

F38_

8

A

k

--9

P

P_

T

_,_

distances in x'-, y'-, and z'-directions, respectively, of

a point on the deflected surface from the centrold of

area of the surface

functions for evaluation of side-force ceofficient on

hemlcylindrlcal leading edge

angle of attack (see fig. i)

angle of sideslip (see fig. i)

Isentroplc exponent (equal to ratio of specific heats for

a perfect gas)

effective value of 7, including effects of ionization

and dissociation

surface orientation angles in preferred order of rotation

(see fig. 2)

angle between the free stream and unit vector normal to

surface

angle defined by figure 9(c)

angle of sweepback of leading edge (fig. 9)

effective angle of sweepback of leading edge (eq. (A3))

angle defined by figure 9(e)

angle defined by figure 9(c)

radius vector from the center of rotation to a point on the

deflected surface, defined by equation (9)

density behind o_lique shock

density in free stream

angle between oblique shock and free-stream direction

angle defined by figure 9(d)

functions for evaluation of normal- and axial-force coeffi-

cients on a spherlcal-wedge nose section

angle defined by figure ll
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Superscript:

Subscripts:

i

i

2

T

tot

S

When

limiting value of _ defined by equation (B6)

angle defined by figure ll

limiting value of _ defined by equation (B9)

angular velocity vector, defined by equation (4)

time derivative

ith component

position 1 for moment reference center

position 2 for moment reference center

equilibrium or trim value

total

stagnation point

m, _, p, q: and r are used as subscripts, a dimensionless

derivative is indicated as defined by equations (12).
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ANALYSIS

For this analysis, the undeflected surface of a flat plate of

arbitrary planform Is considered to lie in the xy-plane of the body-

axis system. Positive directions of distances, flow-directlon angles,

and rotational velocities in thls system are illustrated in figure 1.

The deflected surface lies in a transformed plane wlth the axes oriented

through the angles F, 8, and c (in that order), as illustrated in

figure 2. For an arbitrarily deflected flat surface, which lles in the

xy-plane of the body-axis system, rotating about a point wlth an angular

velocity _ (fig. 3) the magnitude of the normal velocity vector VN

at a distance _ from the center of rotation is given as

VN = -n-Voo + (_' X p-*) (1)
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lit is shown in reference _, that the impact theory, when applied

to a uniformly accelerating motion, gives zero for the force and moment

proportional to the accelerating parameter (that is, &_/V_ and _I/V_). )

In equation (i), the term n is the unit normal vector of the

deflected surface and can be represented in terms of the body-axis sys-

tem as follows:

n = _ sin 5 - _ sin P cos 8 + _ cos F cos 8

The free-stream velocity vector V_ is

v_ : v_(-_cos_ cos_ - _ sin_ - _ sin_ cos_)

(2)

(3)

The angular velocity vector _ is

-9_ : -£p+ iYq+ _r (4)

and the vector _ is given by

p :_x ÷_y +_ (5)

The pressure coefficient for the modified Newtonian impact theory

can be expressed as

Cp = PL - P_ = K (6)%0/

It is to _ noted that equation (6) is applicable only to those

surface areas th_ face t_ f_w; for surface a_as that _e shielded

from t_ flow it is assumed that Cp = O. The condition that the sur-

_< <_3face "see" the flow may be expressed as _ = _ = where _ is the

ang_ _tween the free-stream velocity vector and the unit vector normal

to the surface (fig. 5). Thus,

n.V
(7)

cos _ = V_

and the condition that the surface see the flow may also be expressed

as cos _ _ O.

The pressure coefficient can be written, from equations (i) to (6),

as
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_)CPY -

(8)

The force and moment coefficients based on the area of the deflected

surface and on some characteristic length l are,

cN = _ Cp _._' as (9a)

L
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CA = _ Cp i-n dS (gb)

1 //sCpY._sCy= -
(9c)

1 //S xC#'_clS 1 //S zCp'_'_dSCm = s-Y - S-Y (9d)

1 //S _-' 1 //S -_-_C_ = - S'_ yCpk.n dS + _ zCpJ-n dS
(9e)

1 //S XCpj-_._dS + 1 //S yCpi-_dSCn =- S-_
(9f)

In a stability analysis, small deviations from some equilibrium

condition are usually of interest. These deviations may be represented

in equations (9) by letting the flow-direction angles be

= _ +_ (lO)

_T +

where the subscript T indicates the angle corresponding to the equilib-

rium (trim) condition and the_-quantitles are small deviations in these

angles.
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At the extreme flight velocities for which this analysis applies,

the rotational velocity parameters pl/V_, ql/V_, and rl/V_ would

be very much less than unity. The results of an analog study in refer-

ence 9 indicate that values of ql/V_ for vehicles considered as typical

for reentry or hypervelocity flight are on the order of 0.01. Thus, for

the remainder of this analysis values of" the rotational velocity param-

eters are assumed to approach zero.

The force and moment coefficients may now be written

% = %(_T,_T) +aCN"

CA = CA(CUf,_T) + aC A

Cy = Cy(c_,_T) + aCy

Cm = Cm(c_,_T) + aCm

c_ = CZ(_T,_T) + aC_

Cn = Cn(_T,_T) + ACn_

(ii)

Since -the quantities Am and 2_ are small, use of the small-angle

approximation is permissible. Hence, retaining only first-order terms

in these quantities yields, for the derivatives of interest in stability
analyses:

(12a)

I %1
c& = k_/_o = _ _ s\_-,o

(12b)

18Cml - 1 JJ_ S (_-_P)A¢_O _'_dS i ff SCm_: \_/m_o s_ x - s'-Y

(12o)
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I_l _ I'¢(_ '__._CNq= = _ aJ st_ q_! (_s
\ V_/q._._o \ V_/q___o

(z2a)

a : _ Uasla_1
\ V_/q. o \v_/q_

(L_e)

L
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(]-21")

Cy_ : : -
(Z2g)

(1)s"- -"ss. .ndSx n dS + _-_ y (12h)

(12i)
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i

S_
/_P \ ++ _ >l:-h_,/ i.nx-- j.n dS +--

s_ _/_oo_p__ t_ 0

C_p = _8 P_l

\ _/_

(12J)

1 /T _%\ ->--, :l_
:---szJJs_.j k.ndS+--__ SZ

\ V_/p_+ 0

Cnr= _l_l

\ V_/r_eO

(Z2k)

i

Sl f/S l_)Cp k _-+ 1 //8 /_p k -,l_r.ZJ j'n dS +-- yt_---_) i'_dS

\ 9__/r_O SZ \ V_/r_O

(12z)

//s l_cp\ + + fJfs /_Cp\ +,1 Y(_-_I k'n dS + S_ z(_r_ ) J'n dSS_

k V°°Ir--K) \ Voo/r-_O
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In most analyses the trim value of the sideslip angle 8 is con-

sidered to be zero. This assumption shall be used hereinafter. The

pressure coefficient and the various derivatives under the foregoing

assumptions for the flow-direction angles and the rotational velocities
become

Cp = K cos2_

v_Jq_0

cos _ d2K (_ cos _)_a_0

2K cos _ cos _)A_-.0

2Kcos j ÷

= 2K _ (n-i)(_ (n.

L

1

6
9
1

The various scalar products in the expressions (]2) and (13) may
be written:

_'_ = sin 8

t
_'_ -sin r cos 8_

!
_'_ cos r cos 8#

(14)

Substituting equations (2) and (3) into equation (7) yields the following

expression for cos _:

cos B = -cos m cos 8 sin 8 - sin 8 sin P cos 8 + sin _ cos _ cos P cos 5

(i5)
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and

_(cos _) = -sin _ sin 5 + cos _ cos P cos

(cos _) - sin r cos 8

(16)

Substituting equations (13), (14), and (16) into equations (9) and (12)

yields the following expressions for the coefficients and derivatives

of interest:

CN = K cos2D cos P cos 5

CA = K cos29 sin 5

Cy = K cos29 sin P cos 5

(17a)

(17b)

(17c)

CI =-K c°s2N( cOs P cOs 5 7fS y- d-S + sin P c°s51 S ffS _ SdS)
(17d)

= K cos2N_os" P cos 5 FF x dS
_s

\ OOs
sin 8 ffS z dSh

(17e )

Cn = K c°s2_( sin [" c°s 5 ffS x dS + sin5_ S ffS 2 d_-_)
(17f)

CNc_ 2K cos _ cos _ cos P cos 5

CA< = 2K cos _[-_(cos _)] sin 5

C,._ = 2K cos n (cos _ os P cos 5 x dS sin 8 S-S

(17g)

(17h)

(17i)

! PC dSX

CNq = -2K cos _ cos F cos 8_cos\ P cos 5 ddS][ S
(iTJ)
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CAq=-2Kc°s _ sln 5(c°s r c°s 5 ]IsXdS_ s
(17_)

Ic x2 dSCmq = -2K cos _ °s2p c°s28 II S _2 S
2 cos F sin 5 cos 8 // xz dS

JJs_2 S

 z2)+ sin28 _2 ?
(17_)

Cy_ = -2K cos _ sin2p cos28 (17m)

Cn8 -2K cos _ cos 8<sln F cos 8 IIS x ds IIS Y dSh
= i-_ + sin 8 y-S--/

(17n)

C,_ = 2K cos _ sin F cos ,Icos F cos. 8% [dS,S + sin F cos , fl S zdSh,S/

(17o)

Cnp = 2/( cos _ cos 81sin F<COS P
cos + sin 8 rr yz d__S

dJs _2 S

+ sln P cos 8 _S zx _) IIS £_]_2 --" + cos P sin 8 _2 --
(17p)

C_p =-2K cos _ cos28Icos2p _sY2 dS IIS yz dS--_-_- + 2 sin P cos P _2 S

+ sin2p _2 (17q)

L

1

6

9
1
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s //S x2 dSCnr = -2K cos _ in2p c°s25 _2 S
2 sin P sin 5 cos 5 F_ xy dS

JJs 12 S

+sin%ZS (17r)

Is( ZsC_r = 2K cos _ cos 5 in P os P cos 5 _-_- + sin 8 _-_-

+ sin P c°s 8 /ZS zx ?)+ c°s P sin 5Z/S _%SI_2 _2 -- (17s)

Curves of cos _ and _-------(cos_) as functions of angle of attack

and of the surface orientation angles P and 8 for zero sideslip

angle (eqs. (15) and (16), are presented in figures 4 and 5, respectively.

If the body-axis system (x, y, and z) is transferred to the cen-

troid of area of the deflected surface, the original distances become

x =x+!l-

Y Y+

i

z Z +

(18)

where x, _, and _ are the distances in the x-, y-, and z-directions,

respectively, of a point on the deflected surface from the centroid of

area of the surface, and where a, b, and c are the distances in the

x-, y-, and z-dlrectlons, respectively, from the origin of the body-axis

system to the centroid of area of the deflected surface. Writing the

x-, 7-, and _-distances in terms of the coordinate system of the deflected

surface (_', _', _') yields

= _' cos 5 cos c - _' cos 8 sin c

= x'(sin P sin 5 cos e + cos P sin _)

+ _'(cos r cos c - sin r sin 8 sin c)

= _'(sin r sin c - cos r sin 5 cos e)

+ y'(sin P cos e + cos F sin 5 sin ¢)

(19)
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Thus, the integrals of equations (17) when expressed in terms of the

surface coordinate system and the transfer distances a, b, and c

become :

ff£__:_a (_Oa)

f_Iz__:_ _0_,

_)2 _ = _y cos2¢ + S__ sin 2 cos2 8

(#- 2 --_XYsin • cos _ cos28 + (POd)

SI 2

7 _- - (sin P sin 8 cos e + cos P sin c + S-_ (cos P cos e

- sin P sin 8 sin e)21 + 2 _XY(sin P sin 8 cos ¢

] SI 2

+ cos P sin ¢)(cos P cos c- sin P sin 8 sin c)+ (b) 2 (20e)

77 I I= S--_(sin P sin c - cos P sin 8 cos e)2 + S__(si n p cos c

E)2

"I"

+ cos P sin 8 sin + 2 _XY(sin P sin c
S_

-cos P sin 8 cos e)(sin P cos c + cos P sin 8 sin ¢)+ (_)2

(2of)

L

1

6
9
1
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m

fffxy dsIy= -- cos 5 cos e(sin P sin 5 cos e + cos P sin e)
JJ s\_/-ff- s_2

I X

S_2
- -- cOS 5 sin ¢(cos P cos e - sin P sin 5 sin e)

YxY/_ _(oo_ _o_
+ _Lc°s 5 cos P - sin P sin 5 sin e)SZ

- cos 5 sin e(sin r sin 5 cos e + cos P sin e)l + a b

_ J _2

L

-_zhdS : -_(sin F sin 5 cos ¢ + cos P sin c)(sin P sin eh /s

Iy

- COS r sin 5 cos e) + Q--_(COS F cos e
S_

(20g)

- sin r sin 5 sin e)(sin P cos c + cos P sin 5 sin e)

"I"

+ _l(sin P sin 8 cos c + cos P sin e)(sin P cos 6
SY" _

+ cos P sin 5 sin 6) + (cos P cos c

] bo
- sin P sin 5 sin e)(sin P sin e - cos P sin 5 cos e) + --_

(2oh)
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_Y cos 8 cos 6(sin F sin 6 - cos P sin 5 cos 6)

SZ 2

ix
S_2

- -- cos 5 sin _(sin r cos _ + cos r sin 5 sin ¢)

+ S-_XY_°s 5 cos c(sin r cos 6 + cos r sin 8 sin 6)

)] ac- cos 8 sin e(sin P sin e - cos F sin 8 cos e + i-_
(2o±)

where _X and _y are the moments of inertia of the deflected surface

about axes parallel to the X' and Y' axes and passing through the

centroid of area of the surface, respectively, and Ixy is the product

of inertia of the deflected surface with respect to a pair of axes par-

allel to the X' and Y' axes and passing through the centroid of area

of the surface.

A change in the location of the moment reference center may be

effected by means of the following relations:

a t C T

Cm2 = Cml + C_l 7 - CAI T (21a)

L
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a' b'

Cn2 = Cnl + CY1 -i'- + CA1 _
(21b)

b t c'

c;2 : C;l- cNI T- CY1T (21c)

CNq2 = CNql

a' c'

( °'+ 2K cos _ cos P cos 8 sin 8 _- - cos P cos 8

(21d)

(21e)

( c,= C + 2K cos _ sin 8 sin 5 -- - cos P cos 8
CAq2 AqI

(21f)
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Cmq I - 2K cos q 2os2p cos25(_) 2

- 2 cos P sin 8 cos 5 7 + sin26
(21g)

L

i

5
)
L

Cn82 = Cn_ I - 2K cos q sin P cos 5 sin P cos 8 T + sin 5

C_52 = C181 + 2K cos q sin P cos 8 cos P cos 5 T + sin P cos 5

(21h)

(21i)

C1p 2 = C_p I 2K cos q cos28 os2p
+ 2 sin P cos P

(2ij)

C1r 2 = Clrl + 2K cos q cos 5[sin P(cos P cos 5 a'b--+ sin 8 b'c'
7,2 7,2

Cnp2

+ sin F cos 8 7/ + cos P sin 5

Cnp I + 2K cos q cos 5[sin P(cos P cos

I--

a'e'_ (_)21+ sin P cos 5 7J + cos P sin 8

Cnr2 = Cnrl -

f I

a'b b c'
5 -- + sin 8

_2 12

[2K cos q sin2p cos28 + 2 sin P sin 5 cos 8 a'b____'

_2

(21k)

(211)

(2]=)
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where a' b' and c' are the distances in the x-, y-, and z-directions,

respectively, from the first moment reference center to the second moment

reference center.

SELECTION OF K

According to Newtonian theory, the value of K should be 2. How-

ever, it is shown in references l, 7, 8, and lO that more accurate pre-

dictions of experimental results can be obtained if the value of K is

chosen to give the correct value for the stagnation pressure coefficient.

For blunt bodies the value of the stagnation pressure coefficient is

Cp, s = 2 - _- = _ + 1 _ + 3

Thus, at large angles of attack (near 90o), the constant K should have

the value of equation (22). This value of K should also be used in

the relations for the hemicyllndrical leading edge (appendix A) and the

spherical wedge nose (appendix B).

For a flat surface with an attached shock the constant-density solu-

tion (ref. 7), which in the case of the flat surface is the "exact" solu-

tion, gives for the pressure coefficient on the surface

Cp = (i 2 sin2m = 2<i _ _>sin2_- -

(23)

where the density ratio is

-_- = _ + __ Moo2_In2_

1/2
io \

If [_) tan _ IS small, the factor
cos-2(_ - _)

and if M_2sln2G >> i, the value for the pressure coefflcientmay be

approximated by

(24)

may be omitted;

Cp = (7 + i) sin2m (29)
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This result is similar to that obtained from the small-disturbance theory

of reference ll when the assumption _Qo2sin2_ _ 1 is used. The

Newtonian value for the pressure coefficient on an inclined flat plate

is simply

Cp = 2 sin2_

Thus, at low angles of attack up to the detachment angle the constant K

should have the value T + i.

The second form of equation (23), which is an "exact" relation,

suggests that the modified Newtonian theory could be applied to the

attached shock case, even when M_2sin2_ is not very much greater than

unity, provided that the shock angle _ is used in the Newtonian rela-

tions rather than the surface angle _.

The proper value of W to be used in determining K is a function

of both the Mach number normal to the oblique shock, M_ sin a, and the

altitude. A discussion of the variation of an effective value of 7

which includes the effects of ionization and dissociation for air is

given in reference ]2, and a plot of this variation from this reference

is presented in figure 6. This figure was obtained by use of the 1956

model atmosphere of reference 13. (Note that figure 6 contains data

from references 14 and 15.) Use of a more recent model atmosphere would

change these curves somewhat. Results incorporating the latest altitude

revisions may be obtained as indicated in reference 12.

APPLICATION 0FMETHOD

Before a specific example to illustrate use of the method is

attempted, the assumptions and restrictions which have been incorporated

in equations (17) are recapitulated for convenient reference:

(i) Equations (17) are restricted to only those surfaces which "see"

the flow, a condition which maybe expressed by cos _ _ O. When the

surface does not see the flow it is assumed that Cp = O.

(2) Equations (17) are restricted to zero sideslip angle (_ : 0).

(3) Equations (17) are strictly valid only for small oscillations

about the equilibrium, or trim, condition, because the small-angle

approximation was used. This approximation permitted retention of only

first-order terms in the expressions for the static stability derivatives.
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p_ q_ rZ
(4) The rotational velocity parameters _, _, and _ are assumed

to be vanishingly small in comparison with unity. This condition appears
to be realistic in view of the extreme flight velocities to which the
method applies.

In order to illustrate the procedure used in evaluating the aero-
dynamic coefficients, consider the configuration shownin figure 7.
This configuration consists of flat-plate wing panels, elevons, and
vertical surfaces with hemicylindrical leading edges. Configuration
dimensions (in terms of the length _) and surface angles are given in
figure 7. The center of gravity of the configuration is located 0._94_
behind the apex of the wing surface.

For purposes of calculation the configuration is considered to con-
sist of six separate flat surfaces. These surfaces are the right- and
left-hand wing panels, the right- and left-hand elevons, and the right-
and left-hand vertical surfaces. The geometric properties of these com-
ponents are presented in table I. Also, the double integral expressions
of equations (17) were computedby meansof equations (20) and listed
in this table. Next the values of the normal-force, axlal-force, and
pitching-moment coefficients were calculated by use of equations (17),
figure 4, and the results of table I for the individual surfaces for an
angle-of-attack range of 20° to 60° . For this angle-of-attack range the
fuselage was completely hidden from the flow. These coefficients were
then based on the total configuration planform area by multiplying by
the ratio Si/Stot, where Si indicates the area of the componentsur-
face. Finally, coefficients for all componentswere summedto determine
the values for the complete configuration. Thesevalues of normal-force,
axial-force, and pitching-moment coefficients are presented as functions
of angle of attack in figure 8. The Newtonian value of 2 was used for
the constant K throughout these calculations.

The effects of leading-edge bluntness were also calculated by the
method of appendix A. Six separate edges were considered: the right-
and left-hand leading edges of the wing panel, the right- and left-hand
edges at the tip of the wing (these edges fair into the vertical sur-
faces so that the value for the angle _ was zero for all angles of
attack), and the leading edges of the right- and left-hand vertical sur-
faces. The pitching-moment contribution of the blunt edges was computed
from the normal- and axlal-force coefficients and the x- and z-components
of the lengths from the center of gravity of the configuration to the
midpoint of the longitudinal axes of the hemicyllnders which formed the
edges. The contribution of the spherical-wedge nose section to the
normal- and axial-force coefficients was computedby the method of
appendix B. For this computation the dihedral angle was assumedto be
0°. The effect of this approximation is negligible for this case where

L
1
6

9
1
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the actual dihedral angle was only l0 °. The pitching-moment contribu-

tion of the spherical-wedge nose section was calculated from the values

of the normal- and axial-force coefficients and the distances in the

x- and z-directions from the configuration center of gravity to the

origin of the spherical-wedge section.

The normal-force, axial-force, and pitching-moment coefficients for

the complete configuration including the effects of blunt nose and leading

edges are shown as functions of angle of attack in figure 8. The various

stability derivatives were then calculated for the configuration at the

trim angle of attack of 40°. The results of these calculations, which

represent the sum of the contributions of the six flat-plate surfaces

(the effects of blunt leading edges were not included), are presented

below:

Cm_ = -0.0368

C_ = -0.0356

Cn_ = -0.0005

Cy_ = -0.0650

Cmq = -0. 1139

Czp = -o.o_99

C%r = -0.0002

If the leading edge was so blunt that its contribution to the

stability derivatives was important it could be approximated (for the

purpose of obtaining stability derivatives) by several flat-plate sections.

CONCLUDING REMARKS

A method, based on the modified Newtonian theory, for calculating

aerodynamic forces, moments, and stability derivatives at zero sideslip

angle for combinations of flat plates of arbitrary planform shape and
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orientation is presented. Methods for predicting the aerodynamic forces

on hemicylindrical leading edges and spherical-wedge nose sections are

also presented. Equations are derived and several design-type charts

are presented to facilitate computation. The method is illustrated by

a sample calculation. Values of the multiplicative factor used in

modifying the Newtonian impact theory to account for variations in Mach

number and the ratio of specific heats are discussed.

Langley Research Center,

National Aeronautics and Space Administration_

Langley Air Force Base, Va., November 8, 1961.
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APPENDIX A

FORCE COEFFICIENTS FOR HEMICYLINDRICAL LEADING EDGES

L

1

6

9
1

A sketch of a hemicylindrical leading edge is shown in figure 9(a).

To facilitate the analysis the leading edge will be considered to con-

sist of a squared leading-edge section (figs. 9(b) and 9(c)) and the end

sections (figs. 9(d) and 9(e)). The analysis for either end is similar

and the results are equivalent so only one end section is considered in

this appendix.

The squared leadlng-edge section.- The unit vector parallel to the

leading edge can be written in terms of the body system of axes as

U = i cos 5 sin(A + £) + in 5 sin F sin(A + e) - cos F cos(A + e

+ _sin 5 cos F sin(A + 6) - sin F cos(A + £)]

+ k-bz CAt)= iUx +

The effective sweep angle is defined by the expression

V_'U = -V_ sin Ae (Ae)

combining equations (3), (A1), and (A2), yields

sin A e = Ux cos _ cos _ + Uy sin _ + U z sin _ cos (A3)

From figure 9(c), which shows the hemicylindrical leading edge cut

by a plane normal to the unit vector _, the pressure coefficient may

be written
2

Cp = K_N'sl cos2e (A4)

where e is the angle between the normal-velocity component at the stag-

nation point and the point at which the pressure coefficient is to be

computed.

The normal-velocity component at the stagnation point is given by

-- .u +- U = UV_ sin
2S
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and

so that

The angle

vN,s : v_ cosA e

Cp = K cos2Ae cos28

defined in figure 8(c) is given by the expression

(_)

-9 -@

V_,s-_---v_ cos
jS

or

COS _ = 1 .(cos _ cos 8 sin 8 - sin _ sin F cos 8
COS A e

+ sin a cos _ cos r cos 8) (A7)

The normal-force contribution of the squared leading-edge section

is given by

% =2R--Z___ _0
(m)

where

I _.9 ..9 --@

_.VN,_.._£ u x v.,.-)
sin

is the unit radius vector.

tion,

The scalar product _._ becomes, after suitable algebraic manipula-

--9 -9

k-r = 1 (NI cos 8 + N 2 sin e)
COS A e

where

N 1 :-(U z sin A e - sin c_ cos _)

_2 ---(u_s_ _ - uy cos_ cos _)

Upon substitution of these expressions into equation (AS) and per-

formance of the required integrations the normal-force coefficient for

the squared leading-edge section becomes

L

1

6

9
1
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whe re

[_l_l(_)+CN = _ cos Ae N2f2(_)] (Ag)

1 cos3 _f2(_)--y

Curves of these functions are presented in figure i0. When values

for cos A e and cos _ from sin A e and sin _, respectively, are

computed, care must be taken in determining the quadrant of the angle

so that the cosine values will have the proper signs.

The axial-force and side-force coefficients for the squared leading-

edge section can be determined in a manner similar to that which was

used for the normal-force coefficients. The resulting expressions are

K [Alfl(_) +CA = [ cos A e A2f2(_) ] (A_O)

whe re

AI = -(U x sin A e - cos _ cos _)

A2 = -(Uy sin _ cos _ - U z sin _)

and

K
= cosAe[hfl( )+ (Aii)

where

Y1 = Uy sln Ae - sin

Y2 = -(Ux sin _ cos _ - U z cos _ cos _)

Expressions for the moment coefficients have not been presented,

since these moments are always zero at a point which lles on the lon-

gitudinal axis of the hemicylinder and is midway between the ends of

the hemicylinder. That the moments are zero at this point can be seen

from the fact that the force on any increment of the surface is always

directed toward the center of curvature of the surface, which, in the

ease of the hemicylinder, is located on the longitudinal axis.
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Although the analysis is similar for both the squared leading-edge

section (fig. 9(b)) and the end section (fig. 9(d)), these sections are

treated separately because the limits of integration of the pressure
coefficient over the surface are different.

When _ _ k _ _, the upper limit of integration with respect to e

is _, as was the case for the squared section, and the lower limit of

integration becomes _ - (_ + k). The angle k may be expressed as a

function of U and T as

cos _ = _ cot T (AI2)
R

_ k 2 _, the value of U is restricted toWhen _ _ _

0 _ U _ R tan T cos _ so that the upper and lower limits of integra-

tion with respect to U are R tan T cos _ and 0, respectively.

When _ _ k _ 0, the upper limit of integration with respect to 8

is _ - (_ - _) and the lower limit remains _ - (_ + k). For this

case the value of U is restricted to R tan T cos _ _ U _ R tan Tj so

that the upper and lower limits of integration with respect to U

become R tan T and R tan T cos _, respectively.

The normal-force contribution of the end section of the leading
edge is given by

CN=
2R2tan

tan T cos

ae au

L

1

6

9
1

+
fR R tan T #_/2-(_-_) dU1tan T COS _ J/_/2-(_+_,) CpI_'r-_Rd8

Upon integration the normal-force coefficient becomes

(Al3)

CN 2 (A_)
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where

Ic 1 cos2_)+ (2 + _)sin _I

f4( ) : oos2 

Curves of the functions f3(_)

figure i0.

and f4(_) are presented in

The axial-force and side-force coefficients for the end section of

the leading edge are obtained in a similar manner with the results

and

CA : _ cos Ae +

Cy = _ cos

It may be noted that an expression for the effective sweep angle

may be found in terms of the parameters N2_ A2, Y2" The expression
is

cosAe :_N2 2 +k2 2 +Y2 2

Similarly, an expression for the angle

of the parameters

COS _ =

may be found in terms

NI, __, and YI" This expression is

N 1 cos P cos 5 + A I sin 8 + YI sin P cos 5

(A15)

(AII_6)

cos A_ (A17)
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APFENDIX B

FORCE COEFFICIENTS FOR A SPHERICAL-WEDGE NOSE SECTION

The apex of a swept wing with hemicylindrical leading edges is

often rounded by making the nose a spherical-wedge section provided the

surface orientation angles P and g of the wing panels are zero. If

these angles are not zero, the nose is not a spherical-wedge section but

would be approximated by one if both P and _ are small.

The pressure coefficient for impact theory on a spherical-wedge

nose section is given by the expression

Cp \v_ 1

where the unit radial vector r is given by (fig. ii):

(BI)

r = _(cos 8 cos _ cos ¢ - sin 5 sin ¢) - _ sin _ cos ¢

- _(sin 8 cos _ cos ¢ + cos 8 sin ¢)

Thus, the pressure coefficient is

K_In(_ + 8) cos _ sin ¢ - cos(_ + 8)cos _ cos _ cos ¢%

+ sin _ sin _ cos ¢]2

The normal-force coefficient is given by

(B3)

L

1

6

9
1

50_R2 _/2 Cp_._2 cos, de d,

which becomes for the simple case when _ = 0°

(m)
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Z Z_o 3 ¢(_+8,¢,A)d_ - sin 5 -- _(_+5,_,A)d (B5)

L

1

6
9
1

where, for tan(e + 5)tan _ > cos A,

cos_o : tan(_+ 5)tan, (B6a)

and, for tan(_ + 5)tan _ <-_cos A,

oos_o = cosA (_b)

Also,

_---_ = -sin _ cos _ _rsin2(_ + 5)sin2_

b, t

1 cos2(e + 5)cos2,]cos-l[tan(_ + 5)tan *]+_

+ sin(_ + 5)eos(_ + 5) +

(_7)

-_b¢ _=c°s2%_in2(c_ + 5)sin2_ + 2 cos2(c_ + 5)cos2_]_1 - tan2(c_ + 5)tan2_

- sin(_ + 5)cos(_ + 5)sin "4 cos @ cos-l[tan(_ + 8)tan _]) (88)

_j

and

Similarly,

CA = in 5

Values of # and

*o = _- - (o_ + 8) (39)2

Z% b _,(_%,,A)a,l (BI0)_(_5,,,A)d, + eo_ 5 ./2

for a range of values of _ + 8 and A have

been determined from graphical integration of equations (B7) and (88),

and the results are presented in figure 12. The normal-force and
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axlal-force coefficients due to the spherical-wedge nose section when
= P = 6 = 0° can be calculated from the expressions

CA _(¢ sin 5 + _ cos

(Bll)

Expressions for the moment coefficients are not needed, inasmuch

as the force on any increment of the surface is always directed toward

the center of curvature of the surface and the moments are, therefore,

always zero about the origin of a spherical surface.

L
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9
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Figure I.- Sketch showing positive directions of body system of axes,

flow-dlrection angles, and rotational velocities.
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Figure 2.- Sketch showing positive directions of surface orientation

angles. Undeflected surface lies in XY-plane of body-axls system.



38

O_
_D

!
!

!

N

Figure 3.- Arbitrary flat surface rotating about the origin__of the body

system of axes with angular velocity m.
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Figure 8.- Calculated aerodynamic characteristics of configuration shown

in figure 7.
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(a) Sketch of a hemicylindrical leading edge.
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(b) Sketch showing square-cut

section of hemlcyllndrlcal

leading edge.

(c) Hemlcylindrical leading edge

cut by a plane normal to the

leading-edge vector _.

Figure 9-- Geometry of hemlcylindrlcal leading edge.
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(d) End section of hemicylindrical leading edge.

N,Z

(e) Sketch in plane normal to the leading-edge vector

of hemicylindrical leading edge.

-@

U of end section

Figure 9-- Concluded.
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